Model Shop! One volume done!

The Model Shop, Volume 1Hooray, I have finally finished what used to be called EGADs and is now the first volume of The Model Shop. Calling it the first volume is, of course, a treacherous decision.

So. This is a book of 42 activities that connect geometry to functions through data. There are a lot of different ways to describe it, and in the course of finishing the book, the emotional roller-coaster took me from great pride in what a great idea this was to despair over how incredibly stupid I’ve been.

I’m obviously too close to the project.

For an idea of what drove some of the book, check out the posts on the “Chord Star.”

But you can also see the basic idea in the book cover. See the spiral made of triangles? Imagine measuring the hypotenuses of those triangles, and plotting the lengths as a function of “triangle number.” That’s the graph you see. What’s a good function for modeling that data?

If we’re experienced in these things, we say, oh, it’s exponential, and the base of the exponent is the square root of 2. But if we’re less experienced, there are a lot of connections to be made.

We might think it looks exponential, and use sliders to fit a curve (for example, in Desmos or Fathom. Here is a Desmos document with the data you can play with!) and discover that the base is close to 1.4. Why should it be 1.4? Maybe we notice that if we skip a triangle, the size seems to double. And that might lead us to think that 2 is involved, and gradually work it out that root 2 will help.

Or we might start geometrically, and reason about similar triangles. And from there gradually come to realize that the a/b = c/d trope we’ve used for years, in this situation, leads to an exponential function, which doesn’t look at all like setting up a proportion.

In either case, we get to make new connections about parts of math we’ve been learning about, and we get to see that (a) you can find functions that fit data and (b) often, there’s a good, underlying, understandable reason why that function is the one that works.

I will gradually enhance the pages on the eeps site to give more examples. And of course you can buy the book on Amazon! Just click the cover image above.

 

Posted in content, curriculum development, modeling, self-flagellation, technology | Tagged | Leave a comment

The Index of Clumpiness, Part Four: One-dimensional with bins

In the last three posts we’ve discussed clumpiness. Last time we studied people walking down a concourse at the big Houston airport, IAH, and found that they were clumped. We used the gaps in time between these people as our variable. Now, as we did two posts ago with stars, we’ll look at the same data, but by putting them in bins. To remind you, the raw data:

Raw IAH

Continue reading

Posted in Uncategorized | Leave a comment

The Index of Clumpiness, Part Three: One Dimension

In the last two posts, we talked about clumpiness in two-dimensional “star fields.”

  • In the first, we discussed the problem in general and used a measure of clumpiness created by taking the mean of the distances from the stars to their nearest neighbors. The smaller this number, the clumpier the field.
  • In the second, we divided the field up into bins (“cells”) and found the variance of the counts in the bins. The larger this number, the clumpier the field.

Both of these schemes worked, but the second seemed to work a little better, at least the way we had it set up.

We also saw that this was pretty complicated, and we didn’t even touch the details of how to compute these numbers. So this time we’ll look at a version of the same problem that’s easier to wrap our heads around, by reducing its dimension from 2 to 1.  This is often a good strategy for making things more understandable.

Where do we see one-dimensional clumpiness? Here’s an example:

One day, a few years ago, I had some time to kill at George Bush Intercontinental, IAH, the big Houston airport. If you’ve been to big airports, you know that the geometry of how to fit airplanes next to buildings often creates vast, sprawling concourses. In one part of IAH (I think in Terminal C) there’s a long, wide corridor connecting the rest of the airport to a hub with a slew of gates. But this corridor, many yards long, had no gates, no restaurants, no shoe-shine stands, no rest rooms. It was just a corridor. But it did have seats along the side, so I sat down to rest and people-watch.

Continue reading

Posted in content, curriculum development, modeling, simulation, Uncategorized | Tagged , , , , , , | 1 Comment

The Index of Clumpiness, Part Two

Last time, we discussed random and not-so-random star fields, and saw how we could use the mean of the minimum distances between stars as a measure of clumpiness. The smaller the mean minimum distance, the more clumpy.

1000randomK.K=0,.5,1

Star fields of different clumpiness, from K = 0.0 (no stars are in the clump; they’re all random) to K = 0.5 to K = 1.0 (all stars are in the big clump)

What other measures could we use?

It turns out that the Professionals have some. I bet there are a lot of them, but the one I dimly remembered from my undergraduate days was the “index of clumpiness,” made popular—at least among astronomy students—by Neyman (that Neyman), Scott, and Shane in the mid-50s. They were studying Shane (& Wirtanen)’s catalog of galaxies and studying the galaxies’ clustering. We are simply asking, is there clustering? They went much further, and asked, how much clustering is there, and what are its characteristics?

They are the Big Dogs in this park, so we will take lessons from them. They began with a lovely idea: instead of looking at the galaxies (or stars) as individuals, divide up the sky into smaller regions, and count how many fall in each region.

Continue reading

Posted in content, curriculum development, modeling, simulation, technology | Tagged , , , , , , , , | 5 Comments

The Index of Clumpiness, Part One

1000random.K=0

1000 points. All random. The colors indicate how close the nearest neighbor is.

There really is such a thing. Some background: The illustration shows a random collection of 1000 dots. Each coordinate (x and y) is a (pseudo-)random number in the range [0, 1) — multiplied by 300 to get a reasonable number of pixels.

The point is that we can all see patterns in it. Me, I see curves and channels and little clumps. If they were stars, I’d think the clumps were star clusters, gravitationally bound to each other.

But they’re not. They’re random. The patterns we see are self-deception. This is related to an activity many stats teachers have used, in which the students are to secretly record a set of 100 coin flips, in order, and also make up a set of 100 random coin flips. The teacher returns to the room and can instantly tell which is the real one and which is the fake. It’s a nice trick, but easy: students usually make the coin flips too uniform. There aren’t enough streaks. Real randomness tends to have things that look non-random.

Here is a snap from a classroom activity: Continue reading

Posted in content, curriculum development, modeling, philosophy, technology | Tagged , , , , , | 3 Comments

Capture/Recapture Part Two

Trying to get yesterday’s post out quickly, I touched only lightly on how to set up the various simulations. So consider them exercises for the intermediate-level simulation maker. I find it interesting how, right after a semester of teaching this stuff, I still have to stop and think how it needs to work. What am I varying? What distribution am I looking at? What does it represent?

Seeing how the two approaches fit together, yet are so different, helps illuminate why confidence intervals can be so tricky.

Anyway, I promised a Very Compelling Real-Life Application of This Technique. I had thought about talking to fisheries people, but even though capture/recapture somehow is nearly always introduced in a fish context, of course it doesn’t have to be. Here we go:

Human Rights and Capture/Recapture

I’ve just recently been introduced to an outfit called the Human Rights Data Analysis Group. Can’t beat them for statistics that matter, and I really have to say, a lot of the explanations and writing on their site is excellent. If you’re looking for Post-AP ideas, as well as caveats about data for everyone, this is a great place to go.

One of the things they do is try to figure out how many people get killed in various trouble areas and in particular events. You get one estimate from some left-leaning NGO. You get another from the Catholics. Information is hard to get, and lists of the dead are incomplete. So it’s not surprising that different groups get different estimates. Whom do you believe?

Continue reading

Posted in content, curriculum development, philosophy, simulation | Tagged , , | 1 Comment

Capture/Recapture Part One

Kids doing capture/recapture. From Dan Meyer.

If you’ve been awake and paying attention to stats education, you must have come across capture/recapture and associated classroom activities.

The idea is that you catch 20 fish in a lake and tag them. The next day, you catch 25 fish and note that 5 are tagged. The question is, how many fish are in the lake? The canonical answer is 100: having 5 tagged in the 25 suggests that 1/5 of all fish are tagged; if 20 fish are tagged, then the total number must be 100. Right?

Sort of. After all, we’ve made a lot of assumptions, such as that the fish instantly and perfectly mix, and that when you fish you catch a random sample of the fish in the lake. Not likely. But even supposing that were true, there must be sampling variability: if there were 20 out of 100 tagged, and you catch 25, you will not always catch 5 tagged fish; and then, looking at it the twisted, Bayesian-smelling other way, if you did catch 5, there are lots of other plausible numbers of fish there might be in the lake.

Let’s do those simulations.

Continue reading

Posted in content, curriculum development, philosophy, Randomization | Tagged , | 2 Comments

Talking is so not enough

We’re careening towards to the end of the semester in calculus, and I know I’m mostly posting about stats, but this just happened in calc and it applies everywhere.

We’ve been doing related rate problems, and had one of those classic calculus-book problems that involves a cone. Sand is being added to a pile, and we’re given that the radius of the pile is increasing at 3 inches per minute. The current radius is 3 feet; the height is 4/3 the radius; at what rate is sand being added to the pile?

Never mind that no pile of sand is shaped like that—on Earth, anyway. I gave them a sheet of questions about the pile to introduce the angle of repose, etc. I think it’s interesting and useful to be explicitly critical of problems and use that to provoke additional calculation and figuring stuff out. But I digress.

Continue reading

Posted in class reflection, content, philosophy, self-flagellation, Uncategorized | Tagged , | 1 Comment

Coming (Back) to Our Census

Reflecting on the continuing, unexpected, and frustrating malaise that is Math 102, Probability and Statistics, one of my ongoing problems has been the deterioration of Fathom. It shouldn’t matter that much that we can’t get Census data any more, but I find that I miss it a great deal; and I think that it was a big part of what made stats so engaging at Lick.

So I’ve tried to make it accessible in kinda the same way I did the NHANES data years ago.

This time we have Census data instead of health. At this page here, you specify what variables you want to download, then you see a 10-case preview of the data to see if it’s what you want, and then you can get up to 1000 cases. I’m drawing them from a 21,000 case extract from the 2013 American Community Survey, all from California. (There are a lot more cases in the file I downloaded; I just took the first 21,000 or so so we could get an idea what’s going on.)

Continue reading

Posted in class reflection, curriculum development, philosophy, self-flagellation, technology | Leave a comment

Blood in the Aisles

I don’t quite know how Beth does it! We’re using Beth Chance and Allan Rossman’s ISCAM text, and on Thursday we got to Investigation 1.6, which is a cool introduction to power. (You were a .250 hitter last season; but after working hard all winter, you’re now a .333 hitter. A huge improvement. You go to the GM asking for more money, but the GM says, I need proof. They offer you 20 at-bats to convince them you’ve improved beyond .250. You discover, though the applets, that you have only a 20% chance of rejecting their null, namely, that you’re still a .250 hitter.)

I even went to SLO to watch Beth Herself run this very activity. It seemed to go fine.

But for my class, it was not a happy experience for the students. There was a great deal of confusion about what exactly was going on, coupled with some disgruntlement that we were moving so slowly.

A number of things may be going on here: Continue reading

Posted in class reflection, content, philosophy, self-flagellation | Tagged | Leave a comment